Comparative Assessment of the Performance of Three WEKA Text Classifiers Applied to Arabic Text
نویسندگان
چکیده
This research is conducted in order to compare the performance of three known text classification techniques namely, Support Vector Machine (SVM) classifier, Naïve Bayes (NB) classifier, and C4.5 Classifier. Text classification aims to automatically assign the text to a predefined category based on linguistic features, and content. These three techniques are compared using a set of Arabic text documents that are collected from different websites. The document set falls into four major categories, namely, sports, economics, politics, and prophet Mohammed sayings (Al-Hadeeth Al-Shareef). The text documents pass through a set of preprocessing steps such as removing stop words, normalizing some characters, removing non Arabic text and symbols. These documents are then converted to the appropriate file format that can be used to run the three classification techniques on WEKA toolkit. After conducting the experiments the Naïve Bayes classifier achieves the highest accuracy followed by the SVM classifier, and C4.5 classifier respectively. The SVM requires the lowest amount of time to build the model needed to classify Arabic documents, followed by Naïve Bayes Classifier, and C4.5 classifier respectively.
منابع مشابه
Qualitative and Quantitative Examination of Text Type Readabilities: A Comparative Analysis
This study compared 2 main approaches to readability assessment. Thequantitative approach applied idea density based on part of speech tagging andcompared 3 sets of text types (i.e., narrative, expository, and argumentative) withrespect to their ease of reading. The qualitative approach was done throughdeveloping questionnaires measuring intermediate EFL learners’ perceptions oncontent, motivat...
متن کاملNew stemming for arabic text classification using feature selection and decision trees
In this paper we conduct a comparative study between two stemming algorithms: khoja stemmer and our new stemmer for Arabic text classification (categorization), using Chisquare statistics as feature selection and focusing on decision tree classifier. Evaluation used a corpus that consists of 5070 documents independently classified into six categories: sport, entertainment, business, middle east...
متن کاملHigh capacity steganography tool for Arabic text using 'Kashida'
Steganography is the ability to hide secret information in a cover-media such as sound, pictures and text. A new approach is proposed to hide a secret into Arabic text cover media using "Kashida", an Arabic extension character. The proposed approach is an attempt to maximize the use of "Kashida" to hide more information in Arabic text cover-media. To approach this, some algorithms have been des...
متن کاملروشی جدید جهت استخراج موجودیتهای اسمی در عربی کلاسیک
In Natural Language Processing (NLP) studies, developing resources and tools makes a contribution to extension and effectiveness of researches in each language. In recent years, Arabic Named Entity Recognition (ANER) has been considered by NLP researchers due to a significant impact on improving other NLP tasks such as Machine translation, Information retrieval, question answering, query result...
متن کاملArabic News Articles Classification Using Vectorized-Cosine Based on Seed Documents
Besides for its own merits, text classification (TC) has become a cornerstone in many applications. Work presented here is part of and a pre-requisite for a project we have overtaken to create a corpus for the Arabic text process. It is an attempt to create modules automatically that would help speed up the process of classification for any text categorization task. It also serves as a tool for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013